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Abstract

Distributed redundant disk arrays can be used in a distributed computing
system or database system to provide recovery in the presence of disk crashes
and temporary and permanent failures of single sites. In this paper, we look at
the problem of partitioning the sites into redundant arrays in such a way that the
communication costs for maintaining the parity information are minimized. We
show that the partitioning problem is NP-hard and we propose several heuristic
algorithms for finding approximate solutions.
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1 Introduction

Redundant disk arrays are used for the purpose of providing reliable storage while increasing

the I/O bandwidth in high performance systems [1, 2]. Redundant disk arrays can also be

used in a distributed setting to increase availability in the presence of temporary site failures,

disk failures, or major disasters [3]. In this environment, they are used as an alternative to

multicopy schemes which are much more costly in terms of storage requirements. Cabrera

and Long [4] have proposed the use of redundant distributed disk striping in a high speed

local area network to support such I/O intensive applications as scientific visualization, image

processing, and recording and play-back of color video.

When Distributed Redundant Disk Arrays (DRDA) are used, sites are grouped together

to form a redundant array containing data and parity and capable of recovering from a single

site failure. The size of each array is fixed and is determined by the tradeoff between the

availability requirements of the system and the cost of the storage overhead. Hence a large

distributed data storage system may have to be divided in several arrays of fixed size. In this

paper we look at the problem of partitioning the distributed storage systems into fixed size

arrays in such a way as to minimize the cost of remote accesses that have to be performed

to update the parity information. This problem is somewhat related to the problem of file

allocation and replica placement in a distributed system which has been studied extensively

in the literature [5, 61. However the two problems are different in nature because, in the

DRDA case, there is one redundant item for N data items while in the file allocation problem

each file is replicated several times. Mort irportartly in the replica placement problem there
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is no stringent constraint on the number of sites "sharing" a replica because when the replica

becomes unavailable those sites can access the second nearest replica while in the DRDA

case there is a hard constraint on the number of sites in an array.

In the following section, we describe a typical redundant disk array organization. In

Section 3, we present the model used to formulate the problem mathematically and we prove

that the problem is NP-ha-rd. In Section 4, heuristic algorithms for solving the problem

are described and results from an experimental evaluation are presented. In Section 5 we

develop heuristics with guaranteed bounds on the deviation from the optimal cost. Section 6

deals with the problem of hot spots and with non-uniform site capacity. Finally, Section 7

contains some conclusions.

2 Distributed Redundant Disk Array Organization

Stonebraker and Schloss [3] proposed the DRDA organization shown in Figure 1. The data

at each site is partitioned into blocks and data blocks from different sites are grouped into

a parity group. The bitwise parity of the data blocks in each parity group is computed and

written at a different site. In Figure 1, Si denotes site i, Dij denotes a data block, Pi denotes

a parity block and Si denotes a spare block, all at site i. The number under block in the

first column of the figure denotes the physical block number on disk. Each row in the figure

represents a parity group. The position of the parity block is rotated among the sites in ..................

order to avoid creating a bottleneck at the site where parity is stored. For every update to ........-----

one of the data blocks in the parity group, the parity block needs to be updated using the Odes
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block Siteo Site1  Site2  Site3  Site4  Sites
0 Po S D20  D30  D40  D5o
1 Doo P1  S2  D31  D41  D5,
2 Do1  D10  P 2  S3 D42  D5 2

3 D0 2  D1 , D21  P 3  S4 D5 3

4 D03  D12  D22  D32  P4  S5

5 So D13  D23  D3 3  D 43  P 5

Figure 1: Organization of a distributed redundant disk array (N = 6).

following formula:

Pnew = (Dold E Dnew) ( Pold"

Spare blocks are provided in order to be able to reconstruct data blocks that become inac-

cessible due to a site failure. The failed data block is reconstructed by XORing all other data

blocks and the parity block in its parity group. If K denotes the number of data blocks per

parity group then N = K + 2 denotes the number of sites in a distributed disk array. The

storage overhead for the parity and spare blocks required by DRDAs is (200/K)% compared

to a 100% overhead for the case of two copy schemes.

3 The Model

We model the distributed computing system by an undirected connected graph G = (V, E)

where V is the set of sites and each edge e E E represents a bidirectional communication

link between two sites. For each e E E, we denotes the cost of communication over link e *.

We assume that if n is the number of sites in V then n = mN for some m. We will assume

that the site capacity is uniform. In Section 6.2 we show how to deal with non-uniform site

*For e = (u, v), we could be the actual distance between site u and site v.
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capacity. In the pattern shown in Figure 1, the parity blocks of the N - 2 data blocks of site

i reside on sites i + 1 mod N through i + N - 2 mod N. Therefore there is no parity update

traffic from site i to site i + N- 1 mod N. In order to make the problem symmetrical and thus

easier to tackle, we assume that the pattern shown in Figure 1 is rotated for the next set of

N blocks so that update traffic from a given site is distributed over the remaining N - 1 sites.

This will also provide more load balancing for the parity update traffic. Let M,, designate

the rate of update accesses to data blocks at site v. Each update will cause communication

between the site where the update took place and the site holding the parity for the given

data block. At each site the set of data blocks that have their corresponding parity blocks

on the same site is called a data group. To simplify the model, we assume that the N - 1

data groups share equally the update rate. This implies that the rate at which site v sends

parity update information to each other site in its redundant array is A,, = ,1,/(N - 1). This

assumption is supported by the fact that consecutive data blocks have their parity blocks on

different sites which implies that accesses to a heavily used file that is stored on consecutive

disk blocks will be spread over different data groups. In Section 6, the above assumption

will be removed. The problem of partitioning the sites into arrays of size N in such a way

that parity update costs are minimized can be mathematically formulated as follows:

Problem 1 (SP) Find a partition of V into m disjoint subsets V1, V2, ... , Vm of size N such

that if d(u, v) denotes the length of the shortest path between u and v then ,, d(u, v)
i=1 uEV, vEV,-{fu}

is minimum.

Theorem 1 Problem SP is NP-hard for any fixed N > 3.
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Proof. We prove that problem SP is NP-hard by showing that there is a polynomial time

transformation from the problem of partitioning a graph into cliques of size N to problem

SP. The Partition into Cliques of size N (PC) problem can be stated as follows:

Instance: A graph G = (V, E), with IVI = Nm for some positive integer m.

Problem: Is there a partition of V into m disjoint subsets V, V2 , ... , V, such thaL, the

subgraph of G induced by V is a clique of size N (complete graph with N nodes)?

PC is NP-complete for any fixed N > 3 (see Partition into Isomorphic Subgraphs [7]).

To transform an instance of PC into an instance of SP, it is sufficient to set A,, = 1 for all

v E V, and w, = 1 for all e E E. Then graph G can be partitioned into cliques of size N if

and only if the cost of the optimal solution to the above instance of problem SP is n(N - 1).

0

The cost function E E A, , d(u, v) can be rewritten as E _ (Au + A,)d(u,v)
i=1 uEV vEV-{u} i=1 u,vEV,u~v

= Z S D(u,v), where D(u,v) is defined as D(u,v) = (Au + A,)d(u,v). In this form
i=1 u,vEV,u9v

the general problem is reduced to a uniform load problem with the distance D replacing d.

However D is not a true distance since it does not necessarily satisfy the triangular inequality.

4 Approximation Algorithms

4.1 Description of the Heuristics

The first heuristic is based on a greedy strategy that consists of satisfying first the sites with

the largest update rate. Let A be the list of update rates for all sites. When sites are grouped
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into clusters their update rates are removed from A and replaced by a single update rate for

the cluster. The cluster update rate is the total update rate of the sites in the cluster minus

the fraction corresponding to parity update requests serviced within the cluster. If i sites

with update rates ), ... , Ai form a cluster, the update rate assigned to that cluster in A

will be (-Ak)(1 -

Algorithm 1:

Step 1. Select the largest value in A and let a be the corresponding site (or cluster). Find

the site (or cluster) b such that merging a and b results in the smallest increase in the cost

function. Merge the two sites (or clusters) if the resulting cluster has less than N sites and

the total number of clusters does not exceed m. If the clusters cannot be merged, find the

next best choice for b and repeat. Remove the update rates of the merged sites (or clusters)

from A and replace them with the cluster update rate computed as shown above.

Step 2. Repeat Step I until m clusters having N sites each have been formed.

The computational cost of Algorithm 1 is O(Nn2 ). But it requires that the all-pair

shortest path algorithm be performed first which requires 0(n3 ) operations.

The second approach consists of two stages: in the first stage m sites are identified to be

used as cluster seeds and in the second stage the remaining sites are allocated to the clusters

to form m subsets of N sites each.

Algorithm 2:

Step 1. Select the two sites with the largest distance between each other and include them

in the set S of cluster seeds.
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Step 2. Select the site v with the largest average distance to the sites already in S and add

it to S.

Step 3. Repeat Step 2 above until ISI = m. Each cluster initially contains one of the m

seeds in S.

Step 4. For each of the m clusters, compute the average update rate of the sites in the

cluster. In decreasing order of their average update rate, allocate to each cluster the site

that is closest to it in terms of the distance metric D.

Step 5. Repeat Step 4 above until all sites have been allocated to the m clusters.

We use the distance metric D in Step 4 because it provides the actual increase in the cost

function of a cluster when a node is added to it. The computational cost of the Algorithm 2

is O(Nn 2). It also requires that the all-pair shortest path algorithm be peiformed first.

The third approach is based on the hierarchical clustering technique [8]. We use the

distance matrix whose entries are d(u, v) for all u, v E V. Clusters are formed by merging

together sites or smaller clusters that are close to each other. When two sites (or clusters)

are grouped together, the distance matrix is modified by eliminating the columns and rows

corresponding to the merged sites (or clusters) and replacing them with a single column

and a single row reflecting the average distance between the merged sites and other sites (or

clusters). The procedure is as follows:

Algorithm 3:

Step 1. Find the smallest entry in the distance matrix and merge the two sites (or clusters)

together if the resulting cluster has N sites or less and if the total number of clusters does

8



not exceed m. If any of the latter conditions is not satisfied, select the next smallest entry

and repeat. Once two sites (or clusters) have been merged, update the distance matrix and

the number of clusters accordingly.

Step 2. Repeat Step 1 above until m clusters having N sites each have been formed.

The complexity of Algorithm 3 is O(n 3 ). When an initial partition has been found using

Algorithm 1, 2 or 3, the following procedure can be used to improve it.

Procedure Improve:

Step 1. Select the site u with the highest update rate. For each site v outside site u's

partition, compute the change in cost AC(u, v) if u and v were swapped. Let v* be the site

corresponding to the minimum change in cost: AC(u, v*) = min AC(u, v). If AC(u, v*) < 0

then swap u and v.

Step 2. Repeat Step 1 above for all sites in V in decreasing order of their update rate.

The complexity of the above procedure is 0(n 3 ). The procedure can be repeated several

times as long as it improves the total cost.

4.2 Experimental Evaluation

We have conducted experiments to evaluate the approximate solutions obtained using the

heuristics and to compare the three proposed approaches for site assignment. In the exper-

iments, we used randomly generated graphs. The distance on each edge in the graph was

drawn from a uniform distribution over the interval [1,K]. The update rates at each site

were drawn from a uniform distribution over the interval [1,K\].
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Table 1: Comparison between approximate solutions and the optimal solution.

K,,, KA Random Algorithm 1 Algorithm 2 Algorithm 3 Exhaustive
1000, 10 68400 52439 53462 52649 47475
100, 100 66071 50012 51347 51237 45661

10, 1000 96757 76388 77362 77062 70004

In our experiments we found out that Algorithm 2 performs better when the distance D

is also used in the first stage of the algorithm. This can be explained by the fact that using

D in the generation of the cluster seeds ensures that edges with large D(u, v) will not be

used within a cluster, i.e., sites that have large loads and that are far apart are not placed

in the same cluster. The results shown here for Algorithm 2 were obtained using D instead

of d.

In the first experiment, we compare the approximate solution provided by the heuristics

to the optimal solution. The optimal solution was obtained using exhaustive search. N was

taken to be equal to 5 and n equal to 15. Table 1 shows the results for three situations:

one where the edge weights vary more widely than the site loads, one where both are picked

from the same interval and one where the site loads vary more widely than the edge weights.

Each entry represents the average over 100 randomly generated graphs. The costs of the

approximate solutions are within 10% of the cost of the optimal solution. In the first column

of the table, we have listed the cost of a random solution.

Since, in the first experiment, an exhaustive search was used to find the optimal solution,

the number of nodes n could not be very large. In a second experime,, we compared

the performance of the three heuristics for larger values of n. N was set to 10. Figure 2
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shows the results for the second experiment. For clarity of the figure, we plotted the cost

of the approximate solution divided by 1000. We can see from the figure that Algorithm 3

outperforms Algorithms 1 and 2 for all values of n except when n = 20 in which case

Algorithm 2 performs better. For the first and second environments Algorithm 1 outperforms

Algorithm 2 for large values of n but for the last environment Algorithm 2 outperforms

Algorithm 1. The main point that can be deduced from this experiment is that, in spite

of the fact that Algorithm 3 does not use any information about site loads, it outperforms

the other two algorithms for large n. This means that, for large n, it is more important to

minimize the sum of the edge weights within each cluster than to use the greedy approach

that attempts to assign to the sites with large loads their nearest neighbors.

5 Heuristics with Performance Guarantees

The heuristics described in Section 4 provide in general a good approximate solution. How-

ever, there is no guarantee that the approximate solution will not diverge significantly from

the optimal one in certain cases. In this section, we seek to find a heuristic for which it is

possible to establish a bound on the error between the approximate solution and the optimal

one. We develop such a heuristic first for the case of a system with balanced load, A, = A,

for all v E V, and uniform edge weights, then we look at the more general case of a bal-

anced load system with arbitrary edge weights. Since a problem with arbitrary site loads

can always be transformed into a problem with uniform site load as shown in Section 3,

then the heuristic for the balanced load case with arbitrary edge weights will also provide
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Figure 2: Comparison between the three heuristics.
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performance guarantees for the arbitrary load case.

5.1 Balanced Load and Uniform Edge Weights

The heuristic requires the use of a spanning tree with many leaves. The problem of find-

ing a spanning tree with a maximum number of leaves is NP-hard [71 however there exist

polynomial time algorithms for generating spanning trees with many leaves. Typically these

methods guarantee that a certain fraction of the nodes will be leaves. The fraction of leaves

is a function of the minimum degree k of the graph. Kleitman and West proved the following

result [91:

Theorem 2 (Kleitman-West) If k is sufficiently large, then there is an algorithm that

constructs a spanning tree with at least (1 - bin k/k)n leaves in any graph with minimum

degree k, where b is any constant exceeding 2.5.

It was also conjectured that a spanning tree can be constructed with a larger fraction

of leaves. More specifically, Linial conjectured that the number of leaves could be at least

T-,n+ ck. This stronger result was proved for k = 3 with c3 = 2 and for k = 4 with c 4 = 8/5

191.
Algo-ithm

Step 1. Find a spanning tree with many leaves.

Step 2. Partition the spanning tree into m clusters of N nodes each using procedure Parti-

tionTree described below.
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The partition found for the tree will be used for the original graph. In the description of

the procedure Partition-Tree, we assume that the tree is levelized starting from the root.

Procedure Partitionree:

The procedure partitions the tree from the bottom up. As the clusters are built, whenever

the size of a cluster reaches N nodes, that cluster is removed from the tree. Starting from

the deepest level in the tree, sibling leaves are placed together in a cluster. If all siblings have

been used then their parent is included in the cluster. At an internal node v, all subtrees

rooted at its siblings must be processed so that only less than N nodes are left in each

subtree. Those subtrees are numbered from 1 to d(v) - 1, d(v) being the degree of v. Then

the clusters are formed by adding to the nodes of subtree i enough nodes from subtree i + 1

to make an N node cluster. If there are not enough nodes in subtree i + 1 to form a complete

cluster, the nodes of the two subtrees are placed together and the next subtree is used to

complete the cluster. If all the subtrees ha.ve been used, and there remains an incomplete

cluster then the parent node is added to the remaining cluster and the procedure continues

at the next level. When adding a portion of the nodes of a given subtree to the preceding

subtree(s) to complete a cluster, the nodes at the deepest level in that subtree are used first

so that removal of the newly completed cluster will not disconnect the tree.

Theorem 3 The cost (HEU) of the approximate solution found using a spanning tree with

many leaves and the cost (OPT) of the optimal solution satisfy the following relationship:

HEU N 2

<2a+(1 1'
OPT

where a is the fraction of leaves in the spanning tree.
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Proof We need to establish an upper bound on the cost of the approximate solution

and a lower bound on that of the optimal one. The cost in the graph of the approximate

solution is at most the cost of that solution in the tree. We evaluate the cost in the tree by

adding up the contributions of each edge in the spanning tree to the overall cost. If an edge

connects a leaf node to the tree it will be referred to as a leaf edge otherwise it will be called

an internal edge. A leaf edge will be used in only one cluster and it will be used only for

communication between the leaf node and the other (N - 1) nodes in the cluster. Therefore

the contribution of a leaf edge to the overall cost is 2(N - 1). An internal edge will be used

in at most two clusters and in each cluster it wil- be used by i nodes to communicate with

the other N - i nodes in the cluster. If a designates the fraction of leaf nodes in the tree,

we have:

HEU < anx2(N-1)+(n-1-an)x2x max 2i(N-i)
1<i<N-1

< n(N - 1)(2a + (1 - a)N 2 /(N - 1))

For the cost of the optimal solution, an obvious lower bound is the cost in a complete graph

which is n(N - 1). Hence HEU/OPT < 2a + (1 - a)N 2 /(N - 1). 0

As stated in Theorem 2, for large k, a converges to 1 and the above bound approaches

2. Note that it is reasonable to assume that the minimum degree will be large in practice

because the underlying network has to have sufficient connectivity to enable communication

under node failures and hence has to have a reasonably large minimum degree.

The complexity of the algorithms for generating trees with many leaves [9] is O(EI).

The complexity of the Partition-Tree procedure is O(n).
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5.2 Balanced Load and Arbitrary Edge Weights

For arbitrary edge weights the problem of finding a heuristic with guaranteed performance

bounds is much harder. In the following we describe a heuristic for which a worst case

performance bound can be established. The bound is more significant for systems where link

communication costs (edge weights) do not vary widely. The heuristic consists of finding a

minimum spanning tree, partitioning the tree into clusters using procedure Partition-Tree

and using that partition as an approximate solution. The following result will be used to

establish a lower bound on the cost of the optimal solution.

Lemma 1 In a complete graph, the average weight of the edges in a minimum spanning tree

is at most the average weight of all edges.

Proof We use induction on the number of nodes n. The lemma is obviously true for n = 2

or n = 3. Suppose it is true for graphs with n - 1 nodes and consider an n-node graph.

Select node v such that the average weight of edges incident on v is at least the average

weight of all edges in the graph. Remove v from the graph and find a minimum spanning

tree in the remaining (n - 1)-node graph. Then add to this spanning tree the lightest edge

e" connecting v to the other nodes to form an n-node spanning tree. Let MST,_, and MSTn

be the total weight of the (n - 1)-node and the n-node spanning trees respectively. Let £(v)

be the set of edges incident on v. Using the induction hypothesis, we have:

eEE-C(v) eEE(v)MST,, < MST -1 +W ,. < '( 1/2+1MS~t ~ ~ (n- 1)/ 2  n-1

E W E W, EW,
e4EE-f(v) -Feec(v) +ezet(v) _ ______

(n-1)/2 n-1 n-1 n(n-1)/2
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eEE

n/2

0

To obtain a lower bound on the cost of the optimal solution, we consider the optimal

partition and we build a spanning tree by first finding a minimum spanning tree in each

cluster and then replacing each cluster by a single node and connecting each pair of these

nodes by the lightest edge linking the initial clusters. An intercluster minimum spanning

tree is then found. The intracluster spanning trees along with the intercluster spanning trees

form a spanning tree for the entire graph.

Lemma 2 The list of edge weights of the intercluster minimum spanning tree (ICMST) is

included in the list of edge weights of the global minimum spanning tree (GMST).

Proof Let e be an edge in the ICMST that does not appear in the GMST. Let u and v be

its endpoints in the original graph and let w be its weight. The path in the GMST from u

to v induces a path in the intercluster graph from the cluster of u to that of v. If the path is

a single edge then this edge must have weight w and could replace the edge e in the ICMST.

If the induced path has more than one edge then, since the ICMST cannot contain a cycle,

some of the edges on the induced path must not appear in the ICMST and at least one of

these induced edges that do not appear in the ICMST forms a cycle containing e when added

to the ICMST. Let e' be such an edge. e' must have weight at most w otherwise it could be

replaced in the GMST by (u, v) to obtain a spanning tree with a smaller cost. In addition

e' cannot have weight less than w because it would then be possible to replace e by e' in the
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ICMST and obtain a smaller intercluster spanning tree. Hence the weight of e' is w and we

could remove e and replace it with e' in the ICMST. This process can be repeated until all

edges in the ICMST also appear in the GMST. Hence the lemma is proved. 0

Theorem 4 The cost (HEU) of the approximate solution found using a minimum spanning

tree and the cost (OPT) of the optimal solution satisfy the following relationship:

HEU MST<N
OPT- MST - (m - 1)U'

where MST is the total weight of the edges in the minimum spanning tree and U is the average

weight of the m - 1 heaviest edges in the minimum spanning tree.

Proof In evaluating an upper bound on the cost of the approximate solution, we follow

the same procedure as in the proof of Theorem 3 but we will not distinguish between leaf

edges and internal edges. Each edge e in the tree will be used by at most two clusters and

the contribution of e to the overall cost is bounded by 2 x w. x maxl<i<N_1 2i(N - i). Hence

we have HEU < N 2MST.

Let MST, be the weight of the minimum spanning tree of cluster i for 1 < i < m and MSTC

be the weight of the intercluster tree. We have E!'= MSTi + MSTC > MST. Using Lemma 2,

we have MI MST, + (m - 1)u > MST. Let OPT, be the contribution to the optimal cost by

cluster i. Using Lemma 1 we have OPTi/N > MSTi therefore OPT > N(MST - (m - 1)T).

0
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Let r be the ratio of the largest edge weight to the smallest edge weight. A looser but

simpler bound than the one established in Theorem 4 can be derived using the parameter r:

HEU/OPT < N 1 + -r) < N(1 + r/(N - 1)).

6 Generalization of the Model

6.1 Non-Uniform Load within Site

In our model, we assumed that each site sends parity updates to each other site in its partition

at .ae same rate. This implies a uniform update rate to each of the N - 1 data groups of

a given site that have parity information on each of the N - 1 other sites. If the update

rate information for each data group at each site is available then the model can be refined

to account for the difference in the rate of parity update requests issued by a given site and

destined to the other sites in the array. The refined model should yield better results in the

presence of hot spots. The update rate A, of site u is replaced by N - 1 update rates A, 1 ,

•.., ,IvN-1 corresponding to each of its data groups. In this case, an obvious optimization

would be to have the parity of the ith most frequently accessed data group of a given site

placed on the ith nearest site in its partition. Note that this can be implemented without

having to reshuffle the data on disk by saving the permutation describing the remapping

of the N - 1 data groups for each site and using it to send parity update requests to the

proper site. Given this optimization, a greedy strategy for solving the partitioning problem

is described in the following.
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Algorithm Greedy

Let A be the list of update rates for all data groups at all sites.

Let pu be the number of site v's partition. Initially p,, = -1 for all v E V.

Let ni be the number of sites in partition i. Initially, ni = 0. Assume n-1 = 0 throughout.

Let k be the current number of partitions. Initially k = 0.

Let AK(v) = V - v, for all v E V.

Let I = 0.

Step 1. Select the largest value A in A and let u be the corresponding site. If npu = N go to

Step 5.

Step 2. Find the nearest site to u in K(u). Call it v. If pu or p,, 0 -1 and npu + np < N

or ifp,, =p, = -1 and k < m go to Step 4.

Step 3. Remove v from N/(u). If A/(u) = 0 go to Step 5, otherwise go to Step 2.

Step 4. Ifpu = p, = -1 set pu = p = 1, n, = 2,1= 1+ l, and k = k + 1.

If p,=-I and p5#-1 set pu=p, and nP = nP,+1.

Ifp,5#-1 andp.=-1 setp,=p, and nP =nPU+.

If pu 0 -1 and pu # -1, set the partition number for every site in v's current partition to

pu, set nP =npu +rp , npu =0, and k = k-1.

Step 5. Remove A from A. If A = 0 stop.

Step 6. If E, ni < n, go to Step 1, otherwise stop.

The algorithm uses the same basic idea as Algorithm 1 of Section 4. It tries to satisfy

first the nodes with highest update rate. Its complexity is O(Nn') but as in the case of
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Algorithm 1, it requires the all-pair shortest path algorithm.

6.2 Non-Uniform Site Capacity

The case of non-uniform site capacity can be handled in the same fashion as proposed by

Stonebraker and Schloss [3). We assume that the total number of disks is Np for some pt

and that the number of disks at any given site is at most p. The system could then be

partitioned using the following procedure.

Step 1. Select the N[[V[/NJ sites with the largest number of disks and apply one of the

partitioning algorithms described in the previous sections to assign one disk from each of

the selected sites to an array.

Step 2. Remove the assigned disks and remove sites with no disks left.

Step 3. Repeat the above steps until all disks have been assigned.

Non-uniform disk capacity can be dealt with by using logical disks of size B blocks such

that the site capacities are multiples of B [3].

7 Conclusion

We looked at the problem of partitioning the sites of a distributed storage system into

redundant disk arrays while minimizing the communication costs for updating the parity

information. We showed that the problem is NP-hard in its general form. We investigated

heuristic methods for obtaining approximate solutions to the site partitioning problem. We

tThis replaces the assumption that IVI = MnN.
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also established guaranteed upper bounds on the deviation from the optimal cost for some

of the heuristics. Future research includes evaluating different strategies for dealing with hot

spots and solving the partitioning problem optimally for specific topologies.

References

[1] D. Patterson, G. Gibson, and R. Katz, "A case for redundant arrays of inexpensive disks
(RAID)," in Proceedings of the ACM SIGMOD Conference, pp. 109-116, June 1988.

[2] J. Gray, B. Horst, and M. Walker, "Parity striping of disk arrays: Low-cost reliable
storage with acceptable throughput," in Proceedings of the 16th International Conference
on Very Large Data Bases, pp. 148-161, Aug. 1990.

[3] M. Stonebraker and G. A. Schloss, "Distributed RAID - a new multiple copy algorithm,"
in Proceedings of the Sixth IEEE International Conference on Data Engineering, pp. 430-
437, Feb. 1990.

[4] L.-F. Cabrera and D. D. E. Long, "Swift: Using distributed disk striping to provide high
1/0 data rates," Tech. Rep. UCSC-CRL-91-46, Computer and Information Sciences,
University of California, Santa Cruz, 1991.

[5] L. W. Dowdy and D. V. Foster, "Comparative models of the file assignment problem,"
ACM Computing Surveys, vol. 14, pp. 287-313, June 1982.

[6] B. W. Wah, "File placement on distributed computer systems," IEEE Computer, pp. 23-
32, Jan. 1984.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the Theory
of NP-Completeness. New York: Freeman, 1979.

[8] M. R. Anderberg, Cluster Analysis for Applications. New York: Academic Press, 1973.

[9] D. J. Kleitman and D. B. West, "Spanning trees with many leaves," SIAM Journal on
Discrete Mathematics, vol. 4, Feb. 1991.

22


